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Abstract
In this paper, we demonstrate theoretically that, when an InAs/GaSb-based type
II and broken-gap quantum well is subjected to a light field, conductance can
be observed along the growth direction due to charge transfer between electron
and hole layers which are spatially separated. A peak profile can be observed
in the conductance within sub-terahertz bandwidth. The peak shifts to the
lower frequency (red-shift) with increasing temperature and a more broadened
peak structure can be observed at lower temperatures. Our results suggest that
InAs/GaSb-based quantum well systems are of potential to be applied as sub-
terahertz photovoltaic devices working at relatively low temperatures.

1. Introduction

The InAs/GaSb-based type II and broken-gap quantum well (QW) structure has a unique
electronic subband structure. In such a novel device, the valence subband in the GaSb
layer can be significantly higher than the conduction subband in the InAs layer and holes
and electrons are separated spatially in the GaSb and InAs layers respectively [1, 2].
Motivated by many proposals dealing with advanced electronic and optical devices, type II
and broken-gap QW systems have been investigated very intensively ever since such a device
was realized experimentally in 1987 [3]. In recent years, this unique QW structure has
been applied in advanced optical devices such as uncooled infrared detectors [4], negative
persistent photoconductors [5, 6], etc. Very recently, it has also been realized that InAs/GaSb
based electron–hole bilayer systems can also be used as photodiodes [4] and photovoltaic
detectors [7]. This has shed some light on employing such systems as novel photovoltaic
devices. In this work, we explore theoretically the possibility to apply InAs/GaSb based
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type II and broken-gap QW systems as photocurrent devices working at terahertz (1012 Hz
or THz) or sub-THz bandwidth which lies between electronic and optical phenomena. This
proposal is mainly based on the fact that in such systems the electrons and holes can be excited
by the linearly polarized light fields into different layers due to the overlap of electron and
hole wavefunctions. This can lead to a situation where the charge numbers in different layers
are modified by the applied light fields through optical absorption scattering and a current
circuit can therefore be achieved. Thus, the photocurrent can be generated along the growth
direction. Such a mechanism is electrically equivalent to the admittance spectroscopy in which
the conductance and capacitance are induced by charge transfer from bound to continuum states
under the action of the ac fields [8].

In this paper, on the basis of a Boltzmann equation we develop a simple and transparent
theoretical approach to calculate the photoconductance in a type II and broken-gap quantum
well. The details of the analytical work and theoretical considerations are presented in
section 2. The obtained analytical and numerical results are presented, analysed and discussed
in section 3. The main conclusions obtained from this study are summarized in section 4.

2. Theoretical approaches

In this study, we consider a type II QW structure in which a two-dimensional electron gas
(2DEG) and a two-dimensional hole gas (2DHG) are separated spatially in two layers. When
a linearly polarized light field is applied to such a system, the Hamiltonian to describe such a
two-body system can be written as

H = He + Hh + H ′
e−o + H ′

h−o. (1)

Here, He = P2
e/2m∗

e+Ue(ze) and Hh = −P2
h/2m∗

h+Uh(zh) are the single-particle Hamiltonians
for respectively an electron and a hole, where the energy is measured from the bottom of the
conduction band in the electron layer, Pi = (px,i , py,i, pz,i ) (with i = e or h) is the momentum
operator, Ri = (ri , zi ) = (xi , yi , zi ) is the electron or hole coordinates, m∗

i is the effective
mass for the electron or hole, and Ui(zi ) is the confining potential energy for an electron or a
hole along the growth direction. Furthermore, in equation (1),

H ′
i−o = ± e

m∗
i

A · Pi (2)

is a perturbative Hamiltonian for an electron or a hole interaction with the applied
electromagnetic (EM) field, which is polarized linearly along the growth direction [9], with
A being the vector potential of the radiation field. In the present study, we have neglected
the interaction between electrons and holes in different layers via the Coulomb potential,
because such an excitonic effect in a type II QW is relatively weak due to relatively small
overlap of the electron and hole wavefunctions at the interface. Suppose that the Schrödinger
equation regarding He and Hh can be analytically solved respectively; the electron and
hole wavefunctions along with the corresponding energy spectra are given respectively as
|e〉 = eik·reψe

n(ze) and |h〉 = eik·rhψh
n (zh), and Ee

n(k) = h̄2k2/2m∗
e + εe

n and Eh
n(k) =

−h̄2k2/2m∗
h + εh

n. Here k = (kx , ky) is the electron or hole wavevector in the 2D plane,
and ψ j

n (z j) with a corresponding subband energy ε j
n are the solutions of the Schrödinger

equation along the growth direction for an electron or a hole. Thus, the two-body wavefunction
corresponding to He + Hh is |e, h〉 = |e〉|h〉.

The steady-state electronic transition rate for scattering of an electron or a hole from a state
k in layer i to a state k′ in layer j can be derived using an approach akin to Fermi’s golden rule,
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Figure 1. The ground-state electron and hole wavefunctions obtained from self-consistent
calculation for a fixed InAs layer thickness L InAs and a fixed GaSb layer width LGaSb as indicated.
The interface between InAs and GaSb layers is taken at z = 0 and z is the growth direction.

which reads Wi j(k,k′) = Wi j (k)δk′,k and

Wi j (k) = 2π

h̄

(
eh̄ F0

m∗
i ω

)2

|Xi j |2δ[Ei
n(k)− E j

n′(k)+ h̄ω], (3)

where F0 and ω are respectively the electric field strength and frequency of the EM field
and Xi j = ∫

dz ψ j∗
n′ (z) dψ i

n(z)/dz. It should be noted that although the overlap of the
wavefunctions for an electron and a hole is relatively small in a type II QW structure (see
figure 1) Xi j can be significant if dψ i

n(z)/dz is relatively large. Here we have taken H ′
i−o =

±(eh̄ F0/m∗
i ω)e

iωt d/dz for a weak radiation field so that only the one-photon absorption is a
more possible channel for electronic transition.

In this work, we employ the semi-classical Boltzmann equation in degenerate statistics
as the governing transport equation to study the consequence of applying an EM field to a
type II and broken-gap QW structure. We consider a situation where only the lowest electron
subband and the highest hole subband are occupied respectively by electrons and heavy holes.
For electronic transition from a layer i to a layer j , the time-dependent Boltzmann equation is
∂ fi (k, t)

∂ t
= gs

∑
k′

[Fji(k′,k, t) − Fi j(k,k′, t)] + gs

∑
k′

[Fii (k′,k, t) − Fii (k,k′, t)] (4)

where Fi j(k,k′, t) = fi (k, t)[1 − f j (k′, t)]Wi j (k,k′), fi (k, t) is the momentum-distribution
function for an electron or a hole, and gs = 2 counts for spin-degeneracy. In equation (4),
Fi j (k,k′, t) corresponds to an inter-layer transition and Fii (k′,k, t) to an intra-layer transition.
Furthermore, the effect of the EM field has been included within the time-dependent
electron/hole distribution functions and within the electronic transition rate. Thus, to avoid
double counting, the force term induced by the EM field does not appear on the left-hand
side of the Boltzmann equation. It is known that there is no simple and analytical solution
to equation (4). For the first moment, the mass-balance equation [10] can be derived by
multiplying

∑
k to both sides of the Boltzmann equation. In doing so, we obtain a rate equation

dQe (t)

dt
= dQh (t)

dt
= −Qh(t)λhe − Qe(t)λeh, (5)
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where Qe and Qh are respectively the charge numbers for electrons and holes and λi j is the
scattering rate from a layer i to a layer j . We have used the definition that the electron
and hole densities are respectively ne(t) = gs

∑
k fe(k, t) and nh(t) = gs

∑
k fh(k, t) and

Qe(t) = ene(t)S and Qh(t) = −enh(t)S, with S being the area of the 2D plane. As expected,
equation (5) reflects a fact that only the inter-layer transition can result in a change of the
charge numbers in different layers. Equation (5) also gives a condition of total charge number
conservation d[Qe(t)− Qh(t)]/dt = 0, which implies that the change of the charge numbers in
a certain layer is due to the formation and separation of the electron–hole pairs. Furthermore,
λeh = λE is the emission rate and λhe = λC is the capture rate with respect to electrons, which
are

λE = 4

ne

∑
k′,k

fe(k, t)[1 − fh(k′, t)]Weh(k,k′), (6)

and

λC = 4

nh

∑
k′,k

fh(k, t)[1 − fe(k′, t)]Whe(k,k′). (7)

In the calculation of the emission and capture rates under the condition of a weak EM field,
we can neglect the influence of the EM field on the momentum distribution function and employ
the statistical energy distribution as the distribution function. We take fe(k, t) � fe(Ee

0(k))
and fh(k, t) � fh(Eh

0(k)) with fi (x) being the Fermi–Dirac function for an electron or a hole.
Thus, the emission and capture rates become

λE � 4

ne

∑
k,k′

fe(E
e
0(k))[1 − fh(E

h
0(k))]Weh(k,k′), (8)

and

λC � 4

nh

∑
k,k′

fh(E
h
0(k))[1 − fe(E

e
0(k))]Whe(k,k′), (9)

which are time independent when taking ne and nh as their values at the steady state.
Using equation (5), the current in the circuit is given by

I (t) = −dQe(t)

dt
= Qe(t)λE + Qh(t)λC. (10)

It is known that under the action of an EM driving field δVt = V0eiωt , with ω being the
frequency of the EM field, the electron number in the quantum well Qe(t) is the difference
between the mobile electron number δQe(t) and the emitted electron number

∫ t
0 dt I (t),

namely,

Qe(t) = δQe(t)−
∫ t

0
dt I (t). (11)

For the case of a weak EM field so that a linear response is achieved, we have

δQe(t) = κδVt = κV0eiωt and I (t) = I0eiωt . (12)

Here a coefficient

κ = δQe(t)

δVt
= dQe(t)

dVt
= 2eS

∑
k

∂ fe(Ee(k))
∂μt

∂μt

∂Vt

can be evaluated by assuming that the effect of the EM field is mainly on the Fermi energy of
the system. We note that for a weak radiation field so that a linear response is achieved we have

∂μt/∂Vt = e
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and consequently

κ = 2e2S

kBT

∑
k

fe(E
e
0(k))[1 − fe(E

e
0(k))]. (13)

This result reflects the fact that the emission and capture of electrons or holes are mainly
achieved for transitions around the Fermi level.

Inserting equations (11) and (12) into equation (10), we get

I (t) =
(
κV0eiωt −

∫ t

0
I (t) dt

)
λE + Qh(t)λC

and, as a result,

İ (t) = [
iωκV0eiωt − I (t)

]
λE + Q̇h(t)λC. (14)

When the system is in equilibrium, the total charge number should be conserved so that
Q̇h(t) = Q̇e(t) = −I (t). Thus, equation (14) can be solved analytically. After using the
definition for conductance G = I0/V0, we obtain

G = iκωλE

λE + λC + iω
and G = ReG = κω2λE

(λE + λC)2 + ω2
. (15)

After using the Fermi–Dirac function as the energy distribution function for an electron or a
hole, we obtain for the electron emission and capture rates

λE = C
m∗

h|Xeh|2
m∗

e ne
fe(x

+
h )[1 − fh(x

−
e )] (16)

and

λC = C
m∗

e |Xhe|2
m∗

hnh
fh(x

+
e )[1 − fe(x

−
h )], (17)

where C = 4(eF0)
2/[h̄ω2(m∗

e + m∗
h)], x±

i = (m∗
eε

e
0 + m∗

hε
h
0 ± m∗

i h̄ω)/(m∗
e + m∗

h), fe(x) =
[e(x−EF)/kB T + 1]−1 and fh(x) = [e(EF−x)/kB T + 1]−1 with EF being the Fermi energy.
Furthermore, the coefficient κ = m∗

e e2S fe(ε
e
0)/(π h̄2).

3. Results and discussion

In the present study, we consider a typical InAs/GaSb QW in which the broken-gap structure
can be achieved and has been verified experimentally [2]. The widths of the InAs and
GaSb layers are taken respectively as L InAs = 17 and LGaSb = 5 nm. The electron and
hole wavefunctions and subband energies along with the electron and hole densities are
obtained by solving self-consistently the Schrödinger equation and Poisson equation, where
the Schrödinger equations for an electron and for a hole are coupled through the Hartree
potential determined by the Poisson equation3. Using the material parameters for InAs and
GaSb and taking the energy gap between the bottom of the conduction band in the InAs layer
and the top of the valence band in the GaSb layer to be Eg = 140 meV, the results obtained
from this calculation are ne = 1.14 × 1012 cm−2, nh = 3.10 × 1011 cm−2, εe

0 = 32.0 meV,
εh

0 = 106.3 meV and EF = 104.0 meV. Here the energy is measured from the bottom of the
conduction band in the InAs layer. In such a structure, only the lowest electron subband and the
highest hole subband are occupied by electrons and holes. The electron and hole wavefunctions
and the charge distribution in such a QW are shown respectively in figures 1 and 2. From
these theoretical results, we see that (i) there is a significant overlap of the electron and hole

3 The scheme and details of the self-consistent calculation will be presented elsewhere.
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Figure 2. Electron (solid curve) and hole (dotted curve) distributions in an InAs/GaSb quantum
well. The results are obtained self-consistently for L InAs = 17 and LGaSb = 5 nm. The interface
between InAs and GaSb layers is taken at z = 0.

wavefunctions at the interface between InAs and GaSb (see figure 1); (ii) the electrons and holes
are located mainly in, respectively, the InAs and GaSb layers (see figure 2); and (iii) although
the hole density nh is lower than the electron density ne, the hole distribution is more localized
than the electron distribution. Thus, the overlap between the electron and hole distributions is
mainly through the penetration of the electron wavefunction into the GaSb layer (see figure 1).

When such a type II and broken-gap quantum well is subjected to a linearly polarized
radiation field, electronic transition occurs. This transition is accompanied by the absorption
of a photon and by the charge transfer between different layers. The electrons and holes can
absorb a photon and be excited to a higher energy state. Meanwhile, this process corresponds
to the separation and combination of electron–hole pairs and, therefore, to a charge transfer
in the device system. For example, if an electron–hole pair is formed within the first half
circle of the light field, an electron–hole pair will be separated within the second half circle
of the light field. In the former case, the electron and hole numbers in different layers will be
reduced. In the latter case, the charge numbers in different layers will be increased. As a result,
a current circuit can be formed in different material layers. In figure 3, the conductance in the
current circuit is shown as a function of the radiation frequency at a fixed radiation intensity
for different temperatures. A sharp peak of the conductance can be observed in the sub-THz
regime ωp ∼ 0.1 THz. This implies that a strong photocurrent can be generated in the device by
sub-THz radiation fields. With increasing temperature, the conductance peak is red-shifted and
lowered. This suggests that this kind of photoconduction effect can be detected at relatively low
temperatures. The dependence of the conductance on temperature at a fixed radiation intensity
F0 = 10 V cm−1 for different radiation frequencies is shown in figure 4. Here we note that
when the radiation frequency is higher than ωp (which gives the peak value of G shown in
figure 3) the conductance decreases with increasing temperature, whereas when ω < ωp the
conductance can increase with T (e.g. at ω = 0.08 THz) or first increase then decrease with T
(e.g. at ω = 0.1 THz).

In a type II and broken-gap QW structure, because both electron and hole states are
occupied respectively by electrons and holes and the hole subband is higher than the electron
subband, the additional channels open up for optical transition. In such a situation, optical
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Figure 3. Conductance in the current circuit as a function of radiation frequency ω at a fixed
radiation intensity F0 for different temperatures T . L InAs and LGaSb are respectively the widths for
the InAs and GaSb layers and G0 = e2/h̄.

Figure 4. Photo-conductance as a function of temperatures T at a fixed radiation intensity F0 for
different radiation frequencies ω. The other parameters are the same as in figure 3.

transition processes are in sharp contrast to those in a undoped conventional quantum well in
which optical absorption scattering is mainly achieved through the excitation of electrons in
the valence subbands across the forbidden zone into the conduction subband [11]. The electron
and hole interactions with a light field via absorption scattering in a type II and broken-gap QW
can be achieved in the following ways (see figure 5). In the small k case (processes 1 and 2
in figure 5) electrons in the InAs layer can be scattered into occupied and unoccupied states in
the GaSb layer by the absorption of a photon. This corresponds to the emission of electrons
in the InAs layer. However, in the large k case (processes 3 and 4 in figure 5) holes in the
GaSb layer can be excited into occupied and unoccupied states in the InAs layer by photon
absorption scattering. This corresponds to the capture of electrons. All these optical transition
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Figure 5. Optical transition in a type II and broken-gap quantum well structure via absorption
scattering in different subbands. The intrasubband optical scattering is forbidden. Note that the
electron and hole subbands are located in spatially separated layers. Here Ee(k) = h̄2k2/2m∗

e + εe
0

and Eh(k) = −h̄2k2/2m∗
h + εh

0 are respectively the energy spectra for a 2DEG and a 2DHG and EF

is the Fermi level.

processes can contribute to electronic emission and capture and to the charge transfer between
different layers. Consequently, although the overlap of the electron and hole wavefunctions
at the interface is not as large as in a conventional quantum well (see figure 1), a strong
photocurrent can be generated.

From the theoretical result given by equation (15) one can see that the peak of the
conductance can be observed when the electronic emission and/or capture rates are comparable
to the radiation frequency, i.e. when λE + λC ∼ ω. This implies that when the charge transfer
rate is resonant with the radiation field a strong current can be generated in the circuit. Our
numerical results indicate that for an InAs/GaSb type II quantum well at L InAs = 17 and
LGaSb = 5 nm, λE + λC ∼ 1011 Hz. Thus, a strong photocurrent can be generated by high-
frequency microwave radiation from such a structure.

It is known that optical transition depends strongly on occupancy of the carriers in the
system and, therefore, also depends on temperature sensitively (see figure 4). This has been
reflected in the coefficient κ and emission and capture rates in equation (15). Because λE and
λC are the functional forms of the temperature, the photoconductance of the device depends on
T as indicated in figure 4. It should be noted that with decreasing temperature the conventional
optical transition (i.e., transition between an occupied state and a unoccupied state) is more
likely. Thus, at relatively low temperatures, processes 1 and 4 in figure 5 are more possible.
This is one of the main reasons why the peak of the conductance lowers with increasing
temperature and the red-shift can be observed at higher temperatures.

4. Concluding remarks

In this work, we have demonstrated theoretically that when a linearly polarized sub-THz light
field (such as high-frequency microwave radiation) is applied to an InAs/GaSb based type II
and broken-gap quantum well, a current circuit can be formed and the photocurrent can be
generated via optical absorption scattering accompanied by charge transfer between different
layers. Thus, such a structure can be used as a sub-THz photovoltaic device working at
relatively low temperatures (T ∼ 10 K). We have developed a simple and tractable theoretical
approach to deal with such a situation and obtained theoretical results which can be related
to experiments and experimental findings. We hope the interesting and important theoretical
finding observed in this work can be verified experimentally.
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